

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

May 2024

Chemistry

Higher level

Paper 3

35 pages

© International Baccalaureate Organization 2024

All rights reserved. No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without the prior written permission from the IB. Additionally, the license tied with this product prohibits use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, whether fee-covered or not, is prohibited and is a criminal offense.

More information on how to request written permission in the form of a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organisation du Baccalauréat International 2024

Tous droits réservés. Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite préalable de l'IB. De plus, la licence associée à ce produit interdit toute utilisation de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, moyennant paiement ou non, est interdite et constitue une infraction pénale.

Pour plus d'informations sur la procédure à suivre pour obtenir une autorisation écrite sous la forme d'une licence, rendez-vous à l'adresse https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

© Organización del Bachillerato Internacional, 2024

Todos los derechos reservados. No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin la previa autorización por escrito del IB. Además, la licencia vinculada a este producto prohíbe el uso de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales—, ya sea incluido en tasas o no, está prohibido y constituye un delito.

En este enlace encontrará más información sobre cómo solicitar una autorización por escrito en forma de licencia: https://ibo.org/become-an-ibschool/ib-publishing/licensing/applying-for-a-license/.

Subject details: Chemistry higher level paper 3 Markscheme

Candidates are required to answer **ALL** questions in Section A **[15 marks]** and all questions from **ONE** option in Section B **[30 marks]**. Maximum total = **[45 marks]**.

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- **3.** Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
- 4. A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- 5. An alternative word is indicated in the "Answers" column by a slash (*I*). Either word can be accepted.
- 6. An alternative answer is indicated in the "Answers" column by "*OR*". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** etc. Either alternative can be accepted.
- 8. Words inside chevrons « » in the "Answers" column are not necessary to gain the mark.
- 9. Words that are <u>underlined</u> are essential for the mark.
- **10.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- 11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by *OWTTE* (or words to that effect) in the "Notes" column.
- 12. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- 13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script.
- 14. Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the "Notes" column.
- **15.** If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
- **16.** If a question asks for an equation for a reaction, a balanced symbol equation is usually expected, do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
- 17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

Section A

Q	luesti	on	Answers	Notes	Total
1.	а		a leak «of gas from the system» ✓	Accept amount/volume/concentration H_2O_2 much lower. Do not accept answers that refer to MnO_2 .	1
1.	b	i	scientific claims must be falsifiable <i>OR</i> it should be possible to test a scientific prediction by an experiment ✓	Accept answers that imply this principle such as if hypothesis not supported underlying theory needs to be examined.	1
1.	b	ii	doubling mass will double surface area ✓ «doubling surface area will» double collision rate / frequency of collisions ✓	Accept increasing instead of doubling for both M1 and M2. Do not accept more/greater probability/chance of collisions.	2
1.	b	iii	temperature OR concentration «of hydrogen peroxide»/[H₂O₂] ✓	Accept different specific surface area / particle size. Do not accept simply surface area.	1

– 5 –

(Question 1 continued)

Q	Question		Answers	Answers Notes	
1.	С	i	tangent drawn to curve at t = 0 s \checkmark slope/gradient calculation \checkmark	Accept start of reaction for t=0 s for M1. Do not accept line instead of tangent for M1. Do not accept simply taking a derivative for M2.	2
1.	С	ii	yes <i>AND</i> rate is negligible when no catalyst is present <i>OR</i> no <i>AND</i> reaction still occurs even when no catalyst is present √	Accept yes AND rate is zero when no catalyst is present. Do not accept yes AND the line gives a better fit with the data.	1

Question	Answers	Notes	Total
Question 2. a	Answers ALTERNATIVE 1 $n(CuSO_4) \ll \frac{6.4 \text{ g}}{(63.55 + 32.07 + (4 \times 16.00)) \text{g mol}^{-1}} = \frac{6.4 \text{ g}}{159.62 \text{ g mol}^{-1}} \approx 0.040 \text{ smol} \approx 0.040 $	Notes Accept other valid methods.	2 7

(Question 2 continued)

C	Question		Answers	Notes	Total
2.	b	i	uncertainty in mass loss «= $0.05 + 0.05$ » = «±» 0.1 g \checkmark percentage uncertainty in mass loss «= $\frac{0.1 \text{ g}}{(10.0 - 6.4)} \times 100$ » = «±» $2.78 / 3 \% \checkmark$	Award [2] for correct final answer. Accept 2.77.	2
2.	b	ii	absolute uncertainty in water of crystallization $= 5 \times \frac{2.78}{100} = -4 \times 0.14 \checkmark$	Accept «±»0.15 if percentage uncertainty taken as 3%. Do not award marks for answers with more or less significant figures.	1
2.	С		water molecules in different «chemical» environments <i>OR</i> water molecules have different type of bonding ✓ present in a 4:1 / 1:4 ratio ✓	Do not accept different kinds of water molecules. Accept answers that clearly communicate the ratio.	2

Section B

Option A — Materials

Q	luesti	on	Answers	Notes	Total
3.	а	i	electronegativity difference $\Delta X \ll 3.2 - 0.8 \gg 2.4$ <i>AND</i> average electronegativity $\Sigma X \ll \frac{1}{2} (3.2 + 0.8) \gg 2.0 \checkmark$ falls in "ionic" region of bonding diagram \checkmark	Accept 75% ionic and 25% covalent for M2. Do not accept ionic without reference to diagram.	2
3.	а	ii	electrostatic attraction <i>OR</i> attraction between oppositely charged ions √	Do not accept ionic.	1
3.	а	iii	«small» displacement brings ions of same charge close together <i>OR</i> «small» displacement results in repulsion «between same charged ions» √	Do not accept bonds are weak.	1
3.	b		all electrons are paired/have paired spins \checkmark		1
3.	С	i	<pre>«caesium» very reactive / very high in reactivity series OR cannot be reduced by chemical methods ✓</pre>	Do not accept simply caesium is reactive. Accept difficult to reduce «caesium ions». Accept Cs is higher on activity series than C.	1
3.	с	ii	$Cs^+(l) + e^- \rightarrow Cs(l) \checkmark$		1

(Question 3 continued)

Q	luesti	on	Answers	Notes	Total
3.	С	iii	amount of Cs $= \frac{1.00 \text{ g}}{132.91 \text{ g mol}^{-1}} \approx 0.00752 \text{ «mol} \times \checkmark$ charge $= 0.00752 \text{ mol} \times 9.65 \times 10^4 \text{ C mol}^{-1} \approx 726 \text{ «C} \times \checkmark$	Accept 0.007 for M1. Award [2] for correct final answer.	2
3.	d	i	Similarity: Any one of: increase rate of reaction \checkmark provide an alternative mechanism \checkmark reduce activation energy/ E_a «for the reaction» \checkmark not consumed «in overall reaction» \checkmark Difference: Any one of: 	Accept state for phase.	2
3.	d	ii	«very» large surface area «to mass ratio» ✓		1
3.	d	iii	prevents oxidation \checkmark	Accept prevents reaction with air.	1

(Question 3 continued)

Q	Question		Answers	Notes	Total
3.	d	iv	negative effect on/harmful to environment/human health \checkmark	Accept uncertain effect on human health. Do not award mark for poisonous/toxic.	1
3.	е	i	2√		1
3.	e	ii	volume «= (614 pm)³» = 2.31 × 10 ⁸ «pm³»	Accept 2.31×10^{-22} «cm ³ » OR 2.31×10^{-28} «m ³ ». Whilst units are not required, if given, they must correspond to the numerical value. Do not , for example, award the mark for 2.31×10^{-22} pm ³ .	1

(Question 3 continued)

C	Question		Answers	Notes	Total
3.	e	iii	ALTERNATIVE 1: volume of one mol $\ll \frac{1}{2}(2.31 \times 10^{-22} \text{ cm}^3 \times 6.02 \times 10^{23}) \approx$ $= 69.5 \ll \text{cm}^3 \approx \checkmark$ $\ll \text{density} = \frac{132.91 \text{ g mol}^{-1}}{69.5 \text{ cm}^3 \text{ mol}^{-1}} = 1.91 \ll \text{g cm}^{-3} \approx \checkmark$ ALTERNATIVE 2: volume of one mol of unit cells $\ll = 2.31 \times 10^{-22} \text{ cm}^3 \times 6.02 \times 10^{23} \approx$ $= 139.1 \ll \text{cm}^3 \approx \checkmark$ $\ll \text{density} = \frac{2 \times 132.91 \text{ g mol}^{-1}}{139.1 \text{ cm}^3 \text{ mol}^{-1}} = 1.91 \ll \text{g cm}^{-3} \approx \checkmark$	Award [2] for correct final answer.	2
3.	f		entropy change with a polydentate ligand more favourable/less negative «than change with many monodentate ligands» \checkmark	Accept chelate effect. Accept positive entropy change.	1
3.	g			Accept answers that include the C=O oxygens in the circle.	1

C	Question		Answers	Notes	Total
4.	а		increase flexibility ✓ reduce intermolecular forces between «polymer» chains ✓	Accept increase softness / reduce density / make less brittle for M1. Accept increase distance between chains for M2. Accept allow chains to slide past each other more easily for M2.	2
4.	b		Class: «polychlorinated dibenzo» dioxin«s» √ Effect: hormone disrupting/disrupts metabolic processes OR cellular damage OR genetic damage OR carcinogenic √	Do not accept toxic (given in question stem) for M2.	2
4.	с	i	«facilitates sorting for» recycling \checkmark		1
4.	с	ii	A AND it has C=O/~1700 «cm ⁻¹ » absorption √	Accept A AND B has C–Cl/~700 «cm ⁻¹ » absorption.	1

(Question 4 continued)

Q	uestic	on	Answers	Notes	Total
4.	d		Monomer A HO Monomer B HO COOH K	Accept any structures that have one –OH and one –COOH on each. Award [1 max] if one has two –OH and the other has two –COOH. Accept –COCl or –COOR instead of – COOH.	2
4.	е	i	physical properties depend on molecular orientation «to a fixed axis in the material» \checkmark		1
4.	e	ii	dissolved AND phase transitions occur over range of concentrations OR only possible to vary concentration when dissolved OR pure liquids have «almost» fixed concentration √	Accept at any concentration for range of concentrations.	1

Option B — Biochemistry

G	Question		Answers	Notes	Total
5.	а		$6CO_2(g) + 6H_2O(l) \rightarrow C_6H_{12}O_6(aq) + 6O_2(g) \checkmark$	Ignore light in the equation.	1
5.	b	i	<i>Type of reaction:</i> condensation AND By-product: water √	Accept addition–elimination for Type of reaction.	1
5.	b	ii	insoluble «in water»/cytoplasm ✓	Accept stored as solid grains.	1
5.	b	iii	hydrolyze ✓	Accept convert back to glucose. Accept break down starch «into smaller units/components/monomers».	1

Q	Question		Answers	Notes	Total
6.	а		corn oil <i>AND</i> highest content of polyunsaturated fatty acids <i>OR</i> corn oil <i>AND</i> highest number of C=C/double bonds «per molecule/triglyceride» √	Do not accept least saturated/most unsaturated.	1
6.	b			Award [3] for correct final answer. Award [2 max] for 41.9.	3

(Question 6 continued)

Q	uestic	estion Answers		Notes	Total
6.	C		 higher proportion of «triglycerides of» saturated fatty acids OR saturated fatty acids have greater surface area/higher electron density OR molecules of «triglycerides of» saturated fatty acids are packed more closely/have a linear structure √ 	For M1 do not accept butter is saturated without reference to proportions. For M2 accept stronger intermolecular forces.	2
			stronger London/dispersion/instantaneous induced dipole-induced dipole forces «between linear chains» \checkmark	Accept LDF for London dispersion forces	

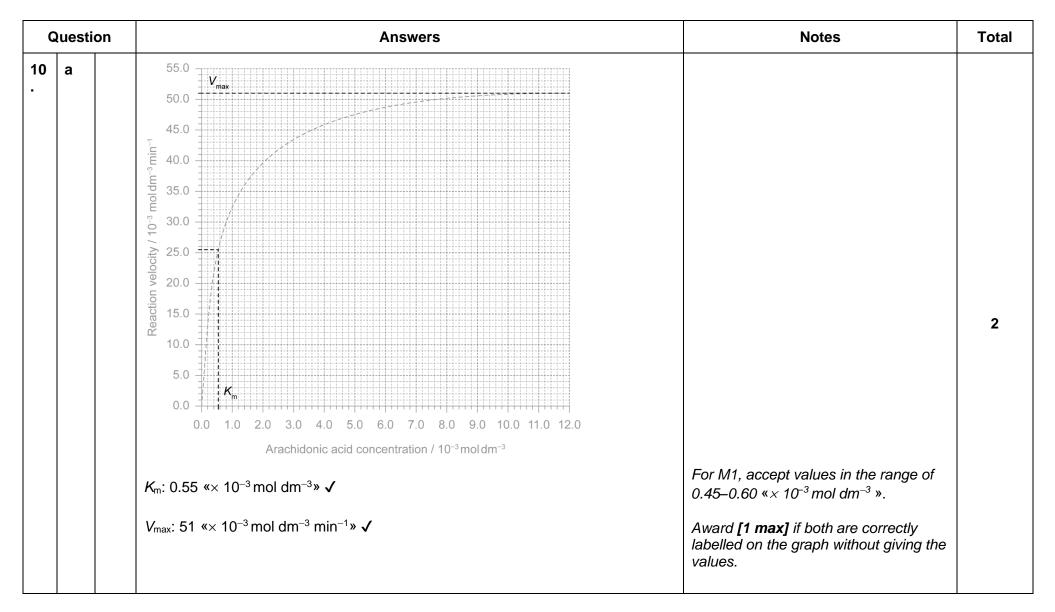
Q	Question		Answers	Notes	Total
7.	a		HOOC CH_2 CH_2 HS CH_2 H $COOH$ $HOOC$ CH_2 CH_2 CH_2 CH_2 CH_2 $COOH$ H $COOH$ CH_2 $COOH$ H $COOH$ CH_2 $COOH$	Accept circle including H.	1
7.	b		glycine/gly AND glutamic acid/glu AND cysteine/cys √	Accept structures. Accept in any order.	1

(Question 7 continued)

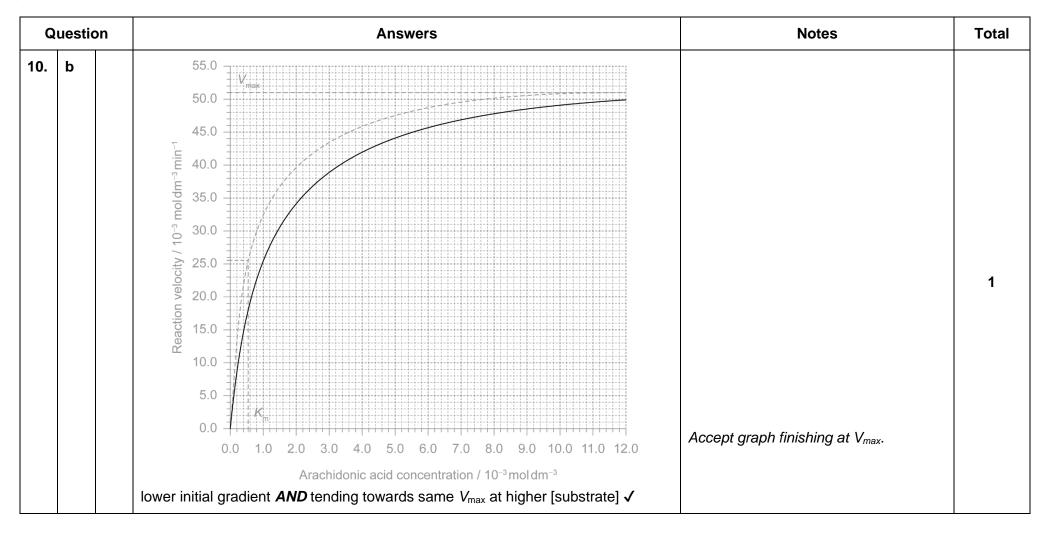
Q	Question		Answers	Notes	Total
7.	с		glycine/gly ✓	Accept structure.	1
7.	d		glutamic acid/glu 🗸	Accept structure. Apply ECF from 7(b).	1

Question	Answers Notes		Total
8. a	Efficiency of enzymes Temperature typical curve as shown ✓	Accept any curve with a single maximum. Ignore other annotations, such as temperature values on the x-axis. Do not penalize if curve does not touch the x-axis at high temperature.	1

– 17 –


(Question 8 continued)

C	uestion	Answers Notes		Total
8.	b	 partial replacement of «non-/scarcely biodegradable» detergent by biodegradable enzymes <i>OR</i> save energy as require lower temperature <i>OR</i> biodegradable √ 	Do not accept references to eutrophication, phosphates, nitrates, etc. Accept break down naturally.	1
8.	с	Award [1] for any of: «treatment of» oil spills ✓ «treatment of harmful» effluents from sewage/paper mills/leather processing/textile industry/food industry ✓	Accept other reasonable examples. Do not accept plastics.	1


Q	Question		Answers	Notes	Total
9.	а		yes AND third spot «from bottom» $R_{\rm f} = 0.36 \checkmark$	Accept values in the range of $0.35-0.37$ for R_f of third spot. Accept answers with YES implied, as in the third spot from the bottom has an R_f of 0.36 . Accept alternative working such as determination of d using Rf and D, where $D = 64$ mm, to identify the third spot as lutein.	1

(Question 9 continued)

Q	luestic	on	Answers	Notes	Total
9.	b		«highly» conjugated bonds/ delocalized bonds OR «many» alternating single AND double/multiple bonds ✓		2
			«intense» absorption «bands» in visible region \checkmark		

(Question 10 continued)

- 21 -

(Question 10 continued)

	Questi	ion	Answers	Notes	Total
10	С		Any two of: K_m higher OR compete for the active site \checkmark higher concentration of substrate/arachidonic acid to reach same $V_{max} \checkmark$ slower production of prostaglandin «precursor» \checkmark		2 max

Question		on	Answers	Notes	Total
11.			«many» OH/hydroxyl «groups» ✓ can H-bond to water ✓	Accept alcohol/hydroxy, but not hydroxide for hydroxyl.	2

Q	uestic	on	Answers	Notes	Total
12.	а		H-bonds 🗸		
			between «complementary» nitrogenous/purine/pyrimidine bases <i>OR</i> between amino and carbonyl groups √	Accept AT and CG for M2.	2
12.	b		TACCGTTCG 🗸		1

Option C — Energy

Question		Answers	Notes	Total
13.	а	$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l) \checkmark$		1
13.	b	amount of CH ₄ in 1.00 g clathrate «= $4 \times \frac{1 \text{ g}}{478.7 \text{ g mol}^{-1}}$ » = 0.008356 «mol» \checkmark specific energy « = 0.008356 mol g ⁻¹ × 891 kJ mol ⁻¹ » = 7.45 «kJ g ⁻¹ » \checkmark	Award [2] for correct final answer.	2
13.	C	Lower specific energy: not all methane clathrate is methane OR part of methane clathrate does not burn ✓ Higher energy density: methane is gas AND methane clathrate is solid OR methane has much lower density «than methane clathrate» OR methane clathrate occupies a much smaller volume than «same mass of» methane ✓	For M1 accept reference to water molecules in methane clathrate as indicating it is not all methane.	2
13.	d	asymmetric «stretch» AND produces/changes dipole moment √		1

Q	uestion	Answers	Notes	Total
13.	e	methane more potent greenhouse gas/higher GWP than carbon dioxide «produced by burning it» ✓	Accept answers that imply we could be harnessing the energy released by the combustion.	1
13.	f	Support: overall increase in both the carbon dioxide concentration and the temperature «anomaly» \checkmark	For M1, accept there is a good/close correlation «in their shapes».	
		Refute: CO_2 increases between ~1940 and ~1970 without corresponding increase in temperature OR global temperatures rose between ~1935 and ~1945 despite [CO ₂] remaining relatively constant OR increases in global temperature between ~1900 and ~1940 and between ~1970 and ~2010 are similar, but increase in CO ₂ levels much higher in latter period \checkmark	For M2, accept the connection may just be coincidental «not causative». Do not accept comments about fluctuations. Accept years that are approximately the same as these listed.	2

Q	Question		Answers	Notes	Total
14.	а	i	methane produces less CO₂ per kJ of energy ✓ methane produces fewer pollutants/particulates/CO/VOCs ✓	For M1 do not accept simply methane produces less CO ₂ . For M2 accept gasoline undergoes incomplete combustion.	2
14.	a	ii	greater energy density OR longer range «for same volume of fuel»/requires smaller fuel tank √	Accept more concentrated source of energy. Accept greater distance between refuelling. Accept gasoline more readily available. Accept gasoline fuelled cars safer / have lower explosion/auto-ignition risk. Accept gasoline easier to handle / store / transport.	1
14.	b	i	A: CH ₃ OH <i>AND</i> B: CH ₃ –O–CO–R <i>OR</i> A: C ₂ H ₅ OH <i>AND</i> B: C ₂ H ₅ –O–CO–R ✓	Accept R-OH/R'-OH AND R-O-CO- R/R'-O-CO-R. Do not accept names.	1
14.	b	ii	low «er» viscosity ✓ «simple esters have» weaker London/dispersion forces «than vegetable oils» ✓	Do not accept intermolecular forces or van der Waals' forces instead of London/dispersion forces.	2

Q	uestion	Answers	Notes	Total
15.	a	Similarity: both convert mass into energy OR both increase the binding energy «per nucleon» ✓ Difference: fusion «two smaller/lighter» nuclei combine «to produce a larger/heavier one» AND fission «heavy» nucleus splits «into fragments/smaller/lighter nuclei» ✓	For similarity accept that mass is lost/mass of products is less than that of reactants. For similarity accept change of atomic number / new elements produced. Do not accept atoms/s instead of nucleus/i.	2
15.	b	«dark» lines in spectrum of sunlight ✓	Do not accept simply spectrometry/spectroscopy. Do not accept references to emission spectra.	1
15.	C	«oxygen» free radical «species»/O2 ^{-/} O2 ²⁻ /HO2/HO ✓	Do not penalize incorrect dots on radicals.	1
15.	d	«nuclear reactor technology can be adapted for» nuclear weapons «production» ✓	Do not accept geopolitical reasons.	1

(Question 15 continued)

Q	Question		Answers	Notes	Total
15.	е	i	low proportion/percentage/abundance of fissile/235U isotope ✓	Accept only one isotope/ ²³⁵ U will undergo fission.	1
15.	е	ii	diffusion/centrifuging requires a gas <i>OR</i> «only common» gaseous compound of uranium √		1
15.	e	iii	lighter molecules/ ²³⁵ UF ₆ /containing ²³⁵ U diffuse more rapidly <i>OR</i> rate of diffusion inversely proportional to «square root of» molar mass √	Accept U-238/heavier particles move to the outside wall of the centrifuge OR U- 235/lighter particles stay in the middle. Accept rate of diffusion decreases with increasing molar mass.	1

Question	Answers	Notes	Total
16. a	$\begin{array}{l} \mbox{light "energy" excites dye molecules} \\ \hline \textit{OR} \\ \mbox{"excited" dye molecules oxidize/dye \rightarrow dye" + e"} \\ \hline \textit{OR} \\ \mbox{electrons from dye pass into TiO_2 layer \checkmark} \\ \mbox{oxidized dye molecules/dye" oxidize iodide/I" to tri-iodide/I_3"} \\ \hline \textit{OR} \\ \mbox{2 dye" + 3I" \rightarrow 2 dye $+$ I_3" \checkmark} \\ \mbox{electrons flow from TiO_2 layer "through external circuit back" to counter electrode $$\textit{OR}$ \\ \mbox{tri-iodide/I_3" flows "through electrolyte" to counter electrode $$\checkmark$} \\ electrons reduce tri-iodide/I_3" to iodide/I" "at counter electrode" $$\mbox{at counter electrode" $$\mb$	Accept iodine/I ₂ for tri-iodide/I ₃ ⁻ . Accept reversible arrows in equations.	4

(Question 16 continued)

Q	luesti	on	Answers	Notes	Total
16.	b	i	Positive electrode (cathode): lead(IV) oxide/PbO₂ ✓ Negative electrode (anode): lead/Pb ✓	Do not accept lead(IV)/Pb ⁴⁺ . Accept correct reactants shown in half-equations.	2
16.	b	ii	higher energy density/charge per unit mass √	Do not accept lithium ion lighter/smaller without mentioning similar capacity. Do not accept references to toxicity. Accept does not involve a liquid/corrosive electrolyte. Accept lower internal resistance.	1

Option D — Medicinal chemistry

Q	Question		Answers	Notes	Total
17.	а		interfere with «bacteria» cell wall <i>OR</i> animal cells do not have a cell wall √	Do not accept transpeptidase without reference to cell wall.	1
17.	b	i	«bulky group/steric shield» prevents enzyme/penicillinase/beta-lactamase attacking β -lactam ring \checkmark	Accept harder for penicillinase to access/reach β -lactam ring. Accept shields/increases stability of β - lactam ring.	1
17.	b	ii	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	Circle must enclose the whole of the COOH group.	1

(Question 17 continued)

	Question		Answers	Notes	Total
17.	. C		 «low doses of » antibiotics reach the water/soil/animal waste OR «low doses of » antibiotics are present in the animals / food produced from animals √ favours survival/spread of mutant/resistant bacteria √ 	Do not accept increased probability of mutation for M2.	2

Question		on	Answers	Notes	Total
18.	а		Any one of: addiction/dependency \checkmark decreased breathing-rate \checkmark decreased heart rates \checkmark constipation \checkmark reduced sex drive \checkmark loss of appetite \checkmark depression \checkmark	Do not accept vague responses such as suppression/decrease in brain activity.	1
18.	b	i	«phenolic» OH/hydroxyl replaced by OCH₃/ether/methoxy group ✓	Accept methylated. Accept alcohol/hydroxy, but not hydroxide for hydroxyl.	1

(Question 18 continued)

Q	Question		Answers	Notes	Total
18.	b	ii	m/z = 299 ✓	Accept molecular ion = 300 . Do not accept simply RMM = 300 Accept absence of $m/z = 285$.	1
18.	b	iii	codeine has fewer OH/hydroxyl groups «than morphine» \checkmark can cross the blood-brain barrier more easily \checkmark	Accept codeine is more lipid soluble / less polar «than morphine» for M1.	2

Q	Question		Answers	Notes	Total
19.	а		anticoagulant/prevention of blood clots \checkmark	Accept blood thinner / reducing chance/incidence of strokes/heart attacks.	1
19.	b		synergistic effect <i>OR</i> increases anticoagulant effect √	Accept the effect of one reinforces the effect of the other. Accept increased «risk of» stomach/gastrointestinal bleeding.	1

Q	Question		Answers	Notes	Total
20.	а		inhibits enzyme/H ⁺ K ⁺ –ATPase /gastric proton pump which secretes H ⁺ «ions into gastric juice» \checkmark	Accept proton pump inhibitor/PPI.	1
20.	b		pH − pK _a = log $\frac{[HCO_3^{-}]}{[H_2CO_3]}$ = 1.12 ✓ [HCO ₃ ⁻] = «13.18 × 2.03 × 10 ⁻³ =» 2.68 × 10 ⁻² «mol dm ⁻³ » ✓	Award [2] for correct final answer.	2

Q	Question		Answers	Notes	Total
21.	а		«drug» blocks/inhibits «viral» enzyme/neuraminidase/NA «activity» \checkmark prevents virus from leaving/escaping host cells «thus cannot infect other cells» \checkmark		2
21.	b		zanamivir <i>AND</i> many OH/hydroxyI/NH/NH₂ groups «that can H-bond with water» ✓	Accept alcohol/hydroxy, but not hydroxide for hydroxyl.	1

C	Question		Answers	Notes	Total
22.	a			Both chiral centres must be identified for the mark.	1
22.	b		chiral auxiliary binds to reactant blocking one reaction site «by steric hindrance» <i>OR</i> chiral auxiliary creates stereochemical condition «necessary to follow a certain pathway» <i>OR</i> stereochemical induction <i>OR</i> existing chiral centre affects the configuration of new chiral centres √	Accept «chemical synthesis» yields a racemic mixture/mixture of enantiomers/diasteromers.	1

Q	Question		Answers	Notes	Total
23.	а		alpha emitters/radionuclides delivered by a carrier/drug/protein «directly to the cancer cells» ✓ alpha particles have low penetration <i>OR</i> «completely» absorbed within a short range ✓ high energy particles/highly ionising/high destructive power ✓	Accept lead-212 in M1.	3
23.	b	i	²⁰⁸ ₈₁ <i>Tl</i> ✓	Accept ²⁰⁸ Tl / thallium-208 / Tl-208. Accept correct product shown in an equation.	1
23.	b	ii	ALTERNATIVE 1: $\lambda = \left(\frac{\ln 2}{61.0} = 1.136 \times 10^{-2} \right) (\min^{-1}) \sqrt{10}$ $t = \left(\frac{\ln \frac{N_0}{N_t}}{\lambda} = \frac{2.303}{1.136 \times 10 - 2} = 203 \right) (\min^{-1}) \sqrt{10}$ ALTERNATIVE 2: $t = \frac{\log \frac{N_t}{N_0}}{\log 0.5} \times t_{\frac{1}{2}} \sqrt{10}$ $t = \left(\frac{61}{0.301} = 203 \right) (\min^{-1}) \sqrt{10}$	Award [2] for the correct final answer.	2

Question			Answers				Notes	Total
24.	а	Compound	Number of signals		Relative areas	Award [1] for any two correct cells.		
		Ibuprofen	3		3:1:1	√	Accept ratio of areas in any order. Do not apply ECF for ratios.	2
		Impurity X	3	AND	2:2:1	~		
24.	b	OR absorbance due absence of abso OR	<i>B</i> <i>AND:</i> absorbance at 3200–3600 «cm ⁻¹ » <i>OR</i> absorbance due to O–H/hydroxyl in alcohol \checkmark absence of absorbance at 1700–1750 «cm ⁻¹ »				<i>"B" only necessary once.</i> Award M2 for not A AND «absorbance for» C=O/carbonyl «in carboxyl group». Accept any absorbance value in the ranges given.	2
		-	sorbance for» C=O/carbo	onyl «in ca	rboxyl» 🗸			